

## OXIDATIVE REGENERATION OF SULFIDED SORBENT BY H<sub>2</sub>S WITHOUT EMISSION OF SO<sub>2</sub>

Young-Soo Lee, Do-Hyeon Park, Hee-Taik Kim and Kyong-Ok Yoo<sup>†</sup>

Department of Chem. Eng., Hanyang Univ., Seoul 133-791, Korea

(Received 29 December 1993 • accepted 10 October 1994)

**Abstract**— Much SO<sub>2</sub>, another perilous air pollutant, was emitted during the oxidative regeneration of sulfided sorbent by H<sub>2</sub>S. In order to prevent emission of SO<sub>2</sub>, we carried out oxidative regeneration with the physical mixture of CaO and sulfided sorbent and investigated the effect of regeneration temperature and oxygen concentration on the reactivity of CaO with SO<sub>2</sub>. The effluent gases were analyzed by G.C. and the properties of sorbent were characterized by XRD, SEM, TG/DTA and EPMA. Deterioration of reactivity of CaO with SO<sub>2</sub> resulted in increment of emission of SO<sub>2</sub> due to the structural changes of CaO above 750°C and that at 850°C was more severe. Furthermore EPMA and XRD analysis revealed that product layer diffusion through the solid product, CaSO<sub>4</sub>, was the rate limiting step for CaO sulfidation. The reaction of CaO with SO<sub>2</sub> was first order approximately and that was accelerated by high O<sub>2</sub> concentration.

**Key words:** *Oxidative Regeneration of Sulfided Sorbent, SO<sub>2</sub> Removal, EPMA, Product Layer Diffusion Control*

### INTRODUCTION

Nowadays, environmental pollution has been serious global problem and legal regulation like Clean Air Act has been reinforced.

The target of our research is removal of H<sub>2</sub>S, one of the most dangerous air pollutant. This gas is very toxic, poisonous, and corrosive. Therefore control of hydrogen sulfide to a safe level is essential. Although conventional process called cold scrubbing technique is effective for removal of H<sub>2</sub>S, it has drawbacks, loss of sensible heat of the gas and costly waste water treatment. As a alternative, high temperature desulfurization using metal oxide or mixed metal oxide sorbents [1-5] has been carried out to enhance the efficiency of H<sub>2</sub>S removal from hot coal-derived gas. These metal oxide/mixed metal oxide sorbents must have not only high H<sub>2</sub>S removal capacity but also good regenerability. Many investigators [6-10] also reported valuable results about regeneration of sulfided sorbents.

Our previous researches reported optimal reaction conditions for sulfidation [2-3] as well as effect of regeneration temperature and oxygen concentration for oxidative regeneration of sulfided sorbent with O<sub>2</sub> [4]. But during the oxidative regeneration, another toxic air pollutant, SO<sub>2</sub> was produced.

Therefore, in order to prevent emission of SO<sub>2</sub>, we accomplished oxidative regeneration with the physical mixture of sulfided sorbent and CaO, which has been reported as excellent sorbent for SO<sub>2</sub> [11-17] and investigated the effect of regeneration temperature and oxygen concentration on the reactivity of CaO. The characterization of reacted sorbent was carried out with the aids of XRD, SEM, TG/DTA and EPMA.

### EXPERIMENTAL

#### 1. Preparation of Sorbent

<sup>†</sup>To whom all correspondences should be addressed.

Sorbent was prepared by a conventional method of synthesizing highly porous metal oxides [18]. According to this method, an aqueous solution containing the metal salts in desired portion, and an organic polyfunctional acid were rapidly dehydrated under vacuum at about 70°C for 24 hours. The resulting amorphous solid foam was calcined at 800°C for 5 hours to form the mixed-metal oxide. The crystallized mixed metal oxide thus formed were homogeneous and highly porous.

The fresh sorbent for H<sub>2</sub>S removal was ZnO-5 at.% Fe<sub>2</sub>O<sub>3</sub>. The ferric oxide was added to prevent the vaporization of ZnO to elemental zinc [5], to increase the mechanical strength and to accelerate the initial rate of ZnO sulfidation [1].

CaO (Hiyashi Co.) for SO<sub>2</sub> removal was calcined at 1000°C for 5 hrs and crushed to 16-35 mesh.

#### 2. Characterization of Sorbent

The fresh and sulfided sorbent and CaO sorbent were characterized by several bulk and surface techniques.

(1) X-ray diffraction (XRD: Rigaku RAD-C) was performed for identification of crystalline phases and solid products.

(2) Scanning electron microscopy (SEM: Jeol, JSM-3 SCF) was used to observe the surface morphology.

(3) Thermogravimetric analysis and differential thermal analysis (TG/DTA: SEICO 320) were used to investigate the variation of property due to heating.

(4) Electroprobe microanalysis (EPMA: Jeol JXA 8600) was used to observe spatial distribution of sulfur within the sorbent.

#### 3. Apparatus and Procedure

The reaction experiments were performed in the fixed-bed reactor system shown in Fig. 1. The fixed-bed reactor consisted of a quartz tube, 1 cm i.d.×45 cm length (30 cm from entrance to fritted quartz wool), was mounted vertically inside an electric furnace and instrumented with a Chromel-Alumel thermocouple in thermowell located by fritted quartz wool. Different gases from regulated cylinders passed through purifiers and then through calibrated flow meters into a common SUS gas line. The gas mixture then passes through the reactor in the downward direction

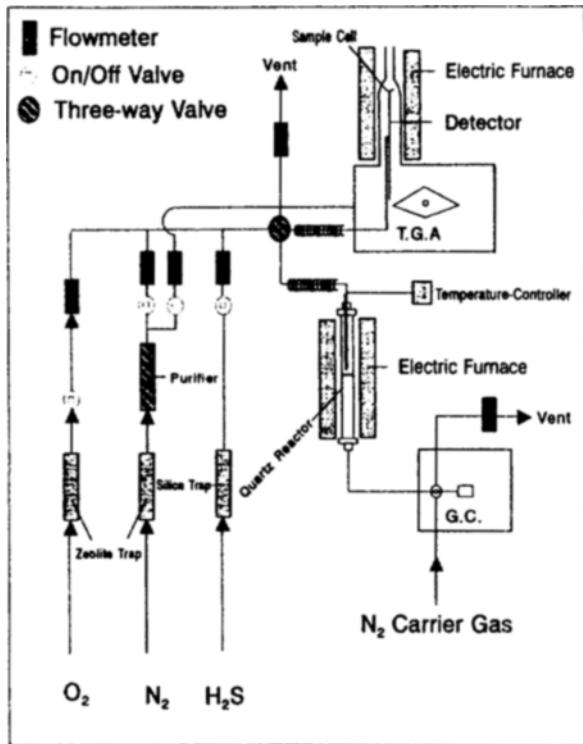



Fig. 1. Schematic diagram of experimental apparatus.

Table 1. Experimental conditions of sulfidation and oxidative regeneration with CaO

|                     | Sulfidation              | Oxidative regeneration with CaO |
|---------------------|--------------------------|---------------------------------|
| Temperature         | 650°C                    | 650-850°C                       |
| Gas composition     | H <sub>2</sub> S: 2 vol% | O <sub>2</sub> : 3-21 vol%      |
|                     | N <sub>2</sub> : 98 vol% | N <sub>2</sub> : 79-97 vol%     |
| Total gas flow rate | 200 ml/min               | 100 ml/min                      |
| Particle size       | 60-80 mesh               | CaO: 16-35 mesh                 |
| Packing amount      | 0.2 g                    | ZnS: 0.2 g                      |
|                     |                          | CaO: 0.4 g                      |
| Pressure            | 1 atm                    | 1 atm                           |

and the lines leading to the reactor were heated. The effluent gases through fixed-bed reactor were analyzed by a G.C. equipped with thermal conductivity detector (TCD) and 8 ft.  $\times$  1/8 in. o.d. Chromosil 310 column operating at 50°C. The same experimental apparatus was used for the removal of SO<sub>2</sub> and experimental conditions were described in Table 1.

Because of difficulty of G.C. calibration for SO<sub>2</sub>, the numeric value of SO<sub>2</sub> in Y-axis, Q<sub>p</sub>, was obtained by peak area recorded and total SO<sub>2</sub> uptake was the product of flow rate of gas, SO<sub>2</sub> uptake (peak area) and time on stream.

## Results and Discussion

### 1. Effect of Regeneration Temperature

The overall reaction consists of two consecutive gas-solid reactions as given below:

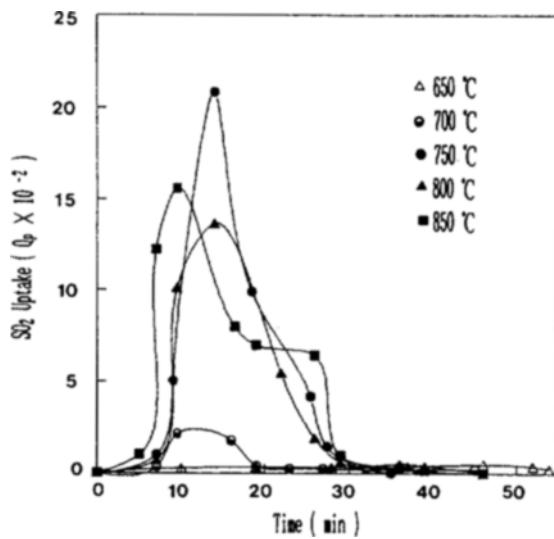
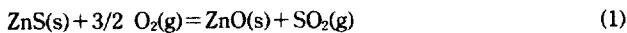




Fig. 2. Effect of temperature on the oxidative regeneration with CaO.

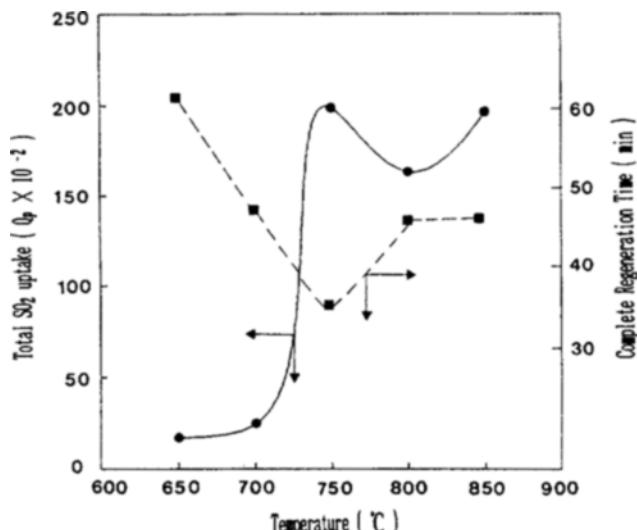



Fig. 3. Total SO<sub>2</sub> uptake and time needed for complete regeneration vs. temperature.



The solid products of Eq. (2) are dependent of reaction temperature, composition of gaseous reactants (especially, existence of O<sub>2</sub>) and time on stream. Below 640°C, the main product was CaSO<sub>3</sub> and gradual formation of CaSO<sub>4</sub> was occurred if the reaction time was longer [11]. It was also reported that intermediate CaSO<sub>3</sub> was formed during the conversion of CaO to CaSO<sub>4</sub> [19]. Hatfield et al. [20], from the I.R. analysis, revealed that CaSO<sub>3</sub> was the main solid product and oxidized to CaSO<sub>4</sub> near 720°C or disproportionized to CaSO<sub>4</sub> and CaS. Furthermore CaS produced by disproportionation of CaSO<sub>3</sub> was not changed below 880°C [21].

Fig. 2 and 3 represented the SO<sub>2</sub> uptake vs. reaction time and total SO<sub>2</sub> uptake vs. reaction temperature. For this experiment, regeneration temperature was the only variable. Oxidative regeneration of sulfided sorbent was the most active for 10 vol.% of O<sub>2</sub> and thin film mass transfer resistance was negligible above

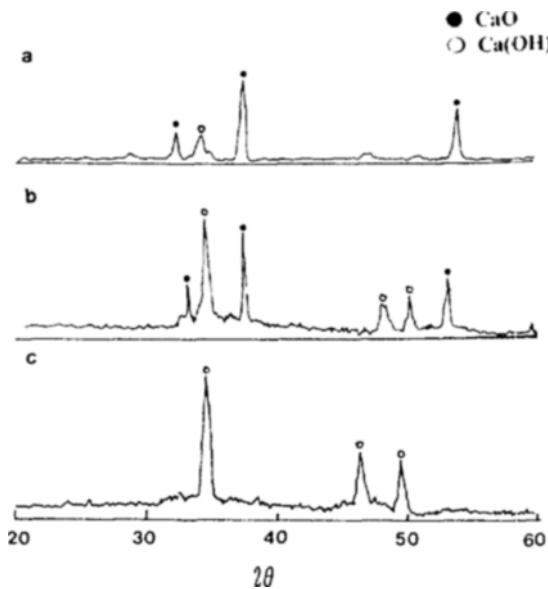



Fig. 4. XRD powder pattern for calcined CaO at 1000°C before reaction.

(A) 16-35, (B) 60-80, (C) 140-200 mesh

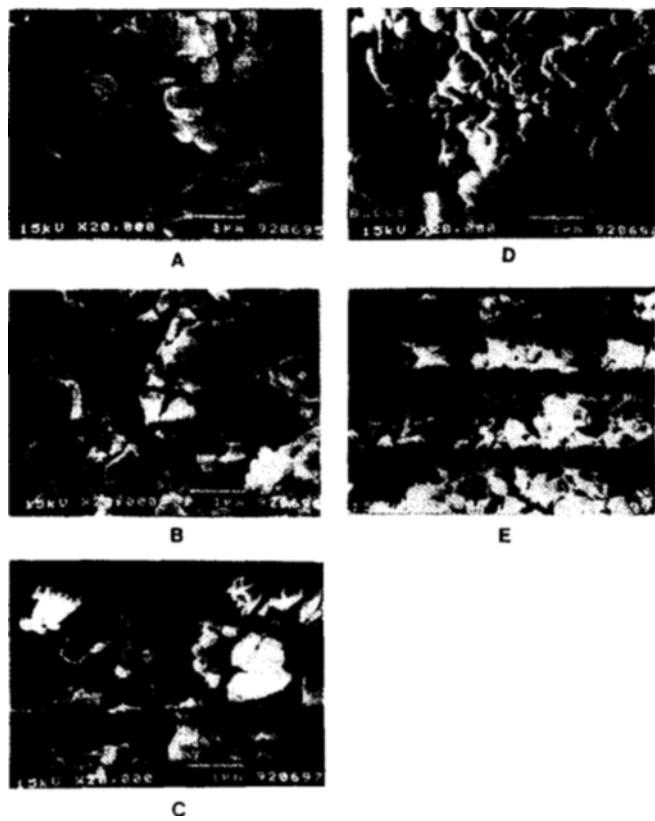



Fig. 5. SEM morphology of CaO sulfided at different temperatures.

(A) 650°C, (B) 700°C, (C) 750°C, (D) 800°C, (E) 850°C

100 ml/min (space velocity = 127 min<sup>-1</sup>) of total flow rate [4]. Thus O<sub>2</sub> content and total flow rate were fixed as 10 vol.% and 100 ml/min, respectively. CaO sorbent for the removal of SO<sub>2</sub> emitted during the oxidative regeneration was 16-35 mesh and mixing ratio of CaO to sulfided sorbent was 2 : 1. Double-bed

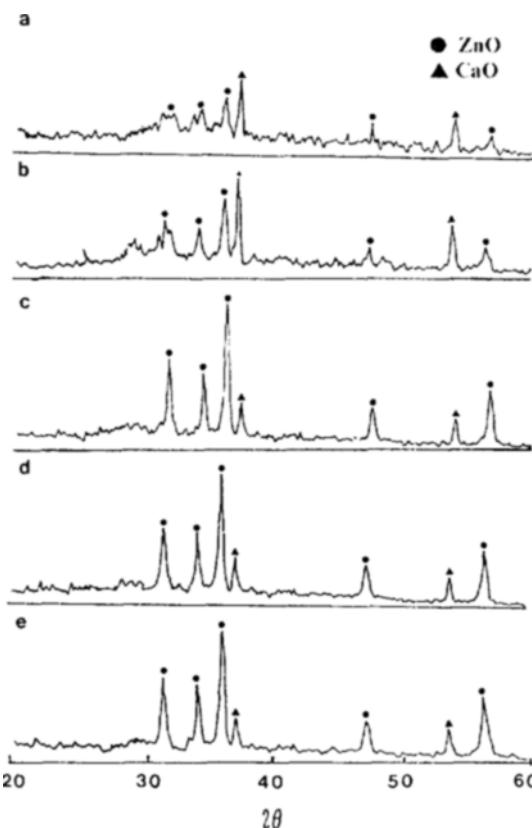



Fig. 6. XRD powder pattern for CaO (16-35 mesh) sulfided at different temperatures.

(A) 650°C, (B) 700°C, (C) 750°C, (D) 800°C, (E) 850°C

packing type was used [4]. The SO<sub>2</sub> uptake at 650°C and 700°C were little. This was considered to be caused by the fact that SO<sub>2</sub> generated was little during the oxidative regeneration without CaO [4] and little structural change of CaO was occurred at these temperatures [22, 23]. Furthermore SO<sub>2</sub> uptake at 750°C was more than that of 800°C. This was caused by that the SO<sub>2</sub> generated was more at 750°C than that of 800°C because of vaporization of ZnS [4] and the reactivity of CaO with SO<sub>2</sub> was deteriorated by the structural change like sintering of CaO causing the reduction of specific surface area. It was reported that the structural change of CaO was very sensitive to temperature [23].

Although it was considered that CaO sorbent calcined at 1000°C was not changed structurally due to heating only below 1000°C, slaking of CaO changed calcined CaO into poorly crystalline Ca(OH)<sub>2</sub> by absorption of H<sub>2</sub>O even though at room temperature. This phenomenon was verified by XRD powder patterns depicted in Fig. 4 and was coincidence with the results of Dario et al. [24]. It was also reported the reactivity of CaO produced by dehydration of Ca(OH)<sub>2</sub> was better than that of pure CaO but structural change was severe at high temperature [24]. At 850°C, this structural change, which causes the reduction of specific surface area and thereby reactivity of CaO, was so severe [23-25] that the amount of emitted SO<sub>2</sub> was more. Moreover this structural change of CaO was accelerated in the presence of SO<sub>2</sub> [26].

Fig. 5 represented SEM photographs of sulfided CaO sorbents. As temperature was the higher, the agglomeration of sorbent was severe and the structural change cited previously was affirmed. XRD powder patterns of reacted CaO sorbents were depicted in

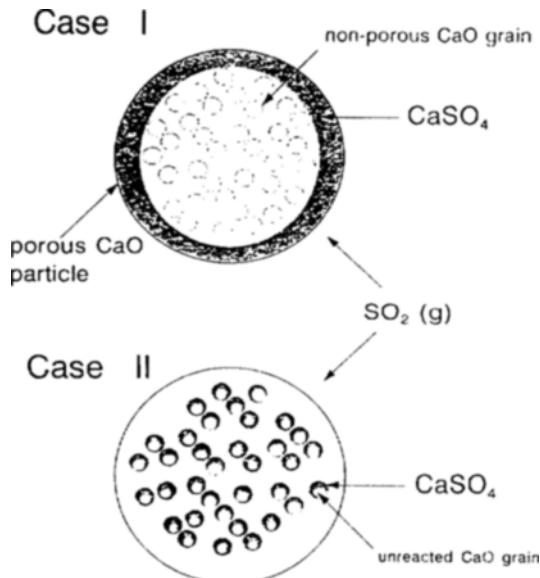



Fig. 7. Schematic diagram of CaO sulfidation model.

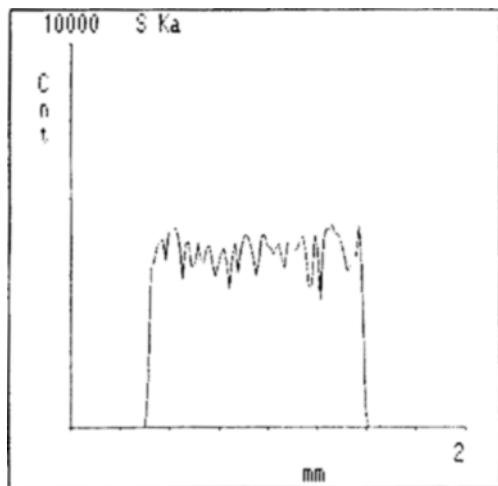
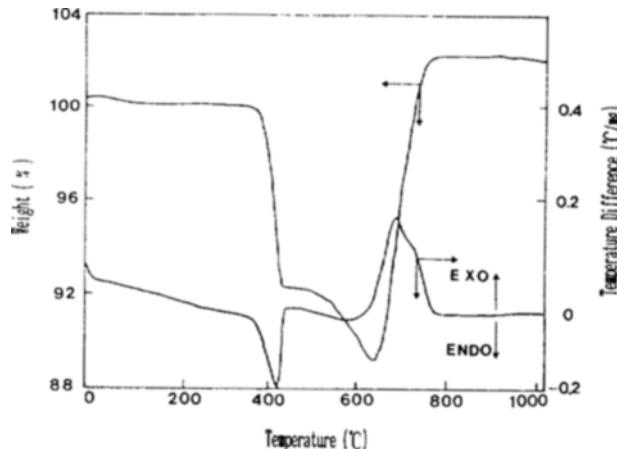
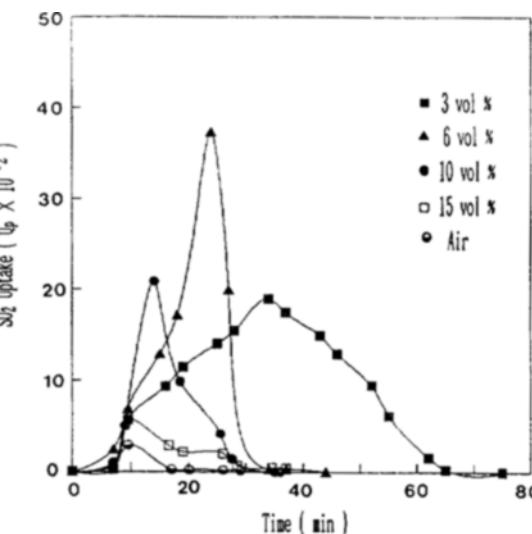





Fig. 8. EPMA sulfur profile for CaO (16-35 mesh) sulfided at 750°C.

Fig. 6. An intriguing phenomenon was observed. From previous data, Fig. 2, the removal of  $\text{SO}_2$  was confirmed. But XRD pattern represented not  $\text{CaS}$  and  $\text{CaSO}_4$  but  $\text{CaO}$  only. On the contrary, for small particle (below 60 mesh), the complete sulfidation occurred because the reactivity is inversely proportional to particle diameter. So only  $\text{CaSO}_4$  was detected by XRD analysis for sulfided sorbent at 750°C. The reaction model for this situation was supposed to be case I and case II depicted in Fig. 7. But considering the sulfur profile obtained by EPMA, Fig. 8, showing uniform spatial distribution of sulfur within particle, case II was more reasonable. Therefore diffusion through the solid product,  $\text{CaSO}_4$ , was considered to be rate limiting step for  $\text{CaO}$  sulfidation and this is coincidence with another's reports [27-31]. The high sensitivity of  $\text{CaO}-\text{SO}_2-\text{O}_2$  reaction to the temperature, for example, has led some investigators to conclude that chemical reaction is rate controlling, while different features of the same data have been interpreted by others as evidence that the reaction is controlled by either diffusion of the reactive gas through the product layer formed on the  $\text{CaO}$  grains that comprise the interior of

Fig. 9. DT/TGA analysis of air oxidation for sulfided sorbent mixed with  $\text{CaO}$  (16-35 mesh) calcined at 1000°C.Fig. 10. Effect of oxygen on oxidative regeneration with  $\text{CaO}$ .

the particles [27] or combinations of diffusion and chemical reaction on the grains [28]. Especially unreacted shrinking core model was reported to be good for describing the reaction of  $\text{CaO}$  grain with  $\text{SO}_2$  [14, 29]. Sulfidation of  $\text{CaO}$  was controlled by product-layer diffusion at the grain surface [30]. Solid product  $\text{CaSO}_4$  of which molar volume is three times as large as that of  $\text{CaO}$ , was deposited on the grain surface and plugged the pore mouth and therefore it acted as the diffusion barrier for  $\text{SO}_2$ . Among the various diffusion mechanism through the  $\text{CaSO}_4$ , outward growth mode representing the migration of  $\text{Ca}^{++}$  ion to  $\text{CaSO}_4$  from the  $\text{CaSO}_4/\text{CaS}$  interface was reported to be the rate limiting step for sulfidation [31].

Fig. 9 showed TG/DGA for oxidation of sulfided sorbent mixed with 16-35 mesh  $\text{CaO}$  calcined at 1000°C in air atmosphere. Sharp endothermic deflection near 410°C meant dehydration of  $\text{Ca}(\text{OH})_2$ , formed by slaking of  $\text{CaO}$  cited previously, and weight decrease after this was due to slow oxidation of  $\text{ZnS}$  and  $\text{FeS}_2$  [4]. The weight increase near 610°C represented the formation of  $\text{CaSO}_4$  resulted from the reaction of  $\text{CaO}$  with  $\text{SO}_2$  generated during the oxidative regeneration.

## 2. Effect of Oxygen Concentration

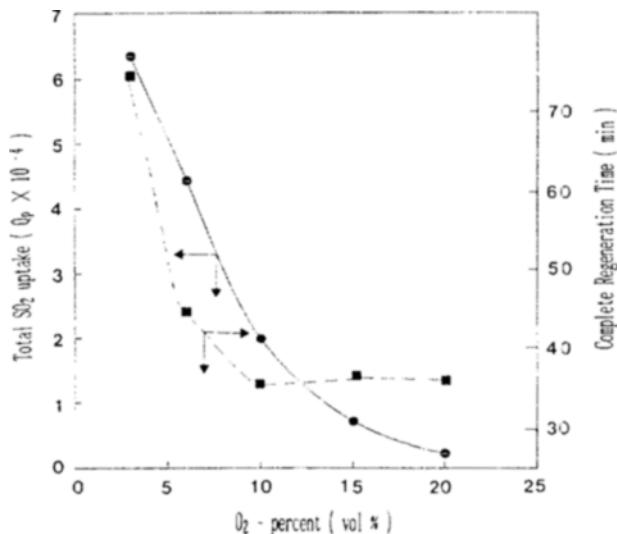



Fig. 11. Total SO<sub>2</sub> uptake and time needed for complete regeneration vs. oxygen content.

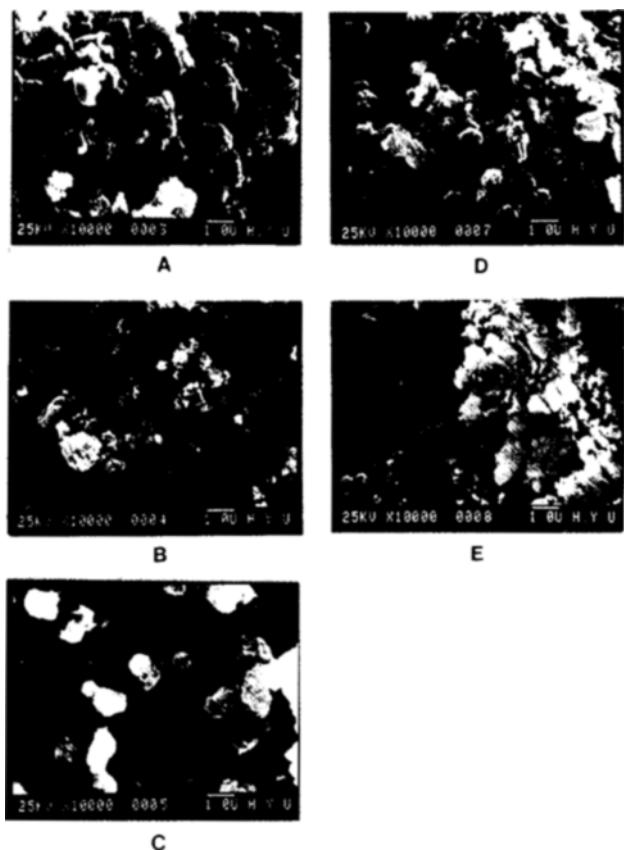



Fig. 12. SEM morphology of CaO sulfided by different oxygen content.

(A) 3 vol%, (B) 6 vol%, (C) 10 vol%, (D) 15 vol%, (E) Air

The effect of oxygen concentration was depicted in Fig. 10. In this case, O<sub>2</sub> concentration was the only variable and regeneration temperature was fixed at 750°C and another conditions were the same as mentioned above. One of the important results of our previous research was that total SO<sub>2</sub> uptake was 0.7 power with respect to O<sub>2</sub> till 10 vol% O<sub>2</sub> and decreased drastically be-

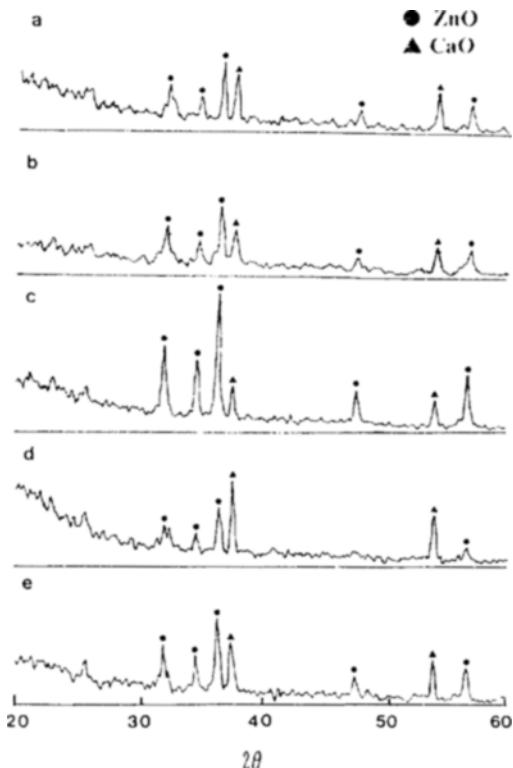



Fig. 13. XRD powder pattern for CaO (16-35) sulfided at different oxygen contents.

(A) 3 vol%, (B) 6 vol%, (C) 10 vol%, (D) 15 vol%, (E) Air

cause of temperature runaway within the reactor due to high exothermic reaction heat [4].

Fig. 11 depicted total SO<sub>2</sub> uptake vs. oxygen content. Considering the linear decrease of SO<sub>2</sub> till 10 vol% O<sub>2</sub>, the reaction of CaO with SO<sub>2</sub> was considered to be about first order with respect to SO<sub>2</sub> and this was consistent with the previous researches [12, 30]. Below 6 vol% O<sub>2</sub>, reaction time was longer and more SO<sub>2</sub> was emitted. This was caused by the fact that O<sub>2</sub> was so deficient that conversion of CaO to CaSO<sub>4</sub> occurred little and slowly [12]. Above 10 vol% of O<sub>2</sub>, it is expected that much SO<sub>2</sub> was emitted because of structural change of CaO caused by temperature runaway within the reactor due to high exothermic reaction heat [4], although, the reactivity of CaO with SO<sub>2</sub> was accelerated by the high O<sub>2</sub> concentration [12] thus the SO<sub>2</sub> emitted was less.

SEM photographs of reacted CaO sorbent in different O<sub>2</sub> contents were depicted in Fig. 12. Break of surface was occurred below 6 vol% but above 15 vol%, the agglomeration of surface grains was found due to high exothermic reaction heat.

XRD powder patterns were depicted in Fig. 13. Regardless of O<sub>2</sub> content, ZnO and CaO were detected. The reason of detection of CaO was as same as mentioned above.

## CONCLUSION

From the experimental results for oxidative regeneration of sulfided sorbent with CaO, we obtained the following conclusions.

The structural changes of CaO above 750°C deteriorated reactivity of CaO with SO<sub>2</sub> and resulted in increment of emission of SO<sub>2</sub> and that at 850°C was more severe. From the EPMA and XRD analysis, the rate limiting step for CaO sulfidation was con-

sidered to be product layer diffusion through the solid product,  $\text{CaSO}_4$ . The reaction of  $\text{CaO}$  with  $\text{SO}_2$  was first order approximately and that was accelerated by high  $\text{O}_2$  concentration.

#### ACKNOWLEDGEMENT

This research was financially supported by Korea Science and Engineering Foundation (Registry No. 931-1100-016-1) in 1993.

#### REFERENCES

- Yoo, K. O.: Research Institute of Industrial Science Report, Hanyang Univ., **25**, 245 (1987).
- Lee, Y. S., Yoo, K. O. and Gavalas, G. R.: *Korean J. of Chem. Eng.*, **8**(4), 214 (1991).
- Choi, Y. J., Lee, Y. S., Kim, H. T. and Yoo, K. O.: *HWAHAK KONGHAK*, **30**(4), 433 (1992).
- Park, D. H., Lee, Y. S., Kim, H. T. and Yoo, K. O.: *HWAHAK KONGHAK*, **30**(6), 700 (1992).
- Lee, Y. S. and Yoo, K. O.: *HWAHAK KONGHAK*, **31**(6), 753 (1993).
- Cannon, K. J. and Denbigh, K. G.: *Chem. Eng. Sci. April/May*, 145 (1957).
- Schrodt, J. T. and Best, J. E.: *AIChE Symposium Series*, **74** (175), 184 (1978).
- Tseng, S. C., Tamhankar, S. S. and Wen, C. Y.: *Chem. Eng. Sci.*, **36**, 1287 (1981).
- Grindley, T. and Steinfeld, G.: Research Report, DOE/MC/16545-1125 (1982).
- Sohn, H. Y. and Kim, D. S.: *Metallurgical Transactions B*, **18B**, 451 (1987).
- Marsh, D. W. and Ulrichson, D. L.: *Chem. Eng. Sci.*, **40**(3), 423 (1985).
- Kojima, T., Take, K., Kunii, D. and Furusawa, T.: *J. of Chem. Eng. of Japan*, **18**(5), 432 (1985).
- Brogwardt, R. H. and Bruce, K. R.: *AIChE J.*, **32**(2), 239 (1986).
- Stouffer, M. R. and Yoon, H. Y.: *AIChE J.*, **35**(8), 1253 (1989).
- Irabien, A., Cortabitarte, F., Viguri, J. and Ortiz, M. I.: *Chem. Eng. Sci.*, **45**(12), 3427 (1990).
- Milne, C. R., Silcox, G. D., Pershing, D. W. and Kirchgessner, D. A.: *Ind. Eng. Chem. Res.*, **29**(2), 139 (1990).
- Tambe, S., Gauri, K. L., Li, S. and Cobourn, W. G.: *Environ. Sci. Technol.*, **25**(12), 2071 (1991).
- Marcilly, C., Courty, P. and Delmon, G.: *J. Am. Ceram. Soc.*, **53**, 56 (1970).
- Fields, R. B., Burdett, N. A. and Davidson, J. F.: *Trans. I. Chem. Eng.*, **57**, 276 (1979).
- Hatfield, J. D., Dim, Y. K., Mullins, R. C. and McClellan, G. H.: NTIS. Publication, PB202, 407 (1970).
- Christman, P. G. and Edgar, T. F.: AIChE Meeting, New Orleans (1981).
- Borgwardt, R. H.: *Chem. Eng. Sci.*, **44**(1), 53 (1989).
- Silcox, G. D., Kramlich, J. C. and Pershing, D. W.: *Ind. Eng. Chem. Res.*, **28**, 155 (1989).
- Dario, B. and Luigi, B.: *J. Am. Ceram. Soc.*, **63**(7), 8 (1980).
- Irabien, A., Viguri, J. R., Cortabitarte, F. and Ortiz, I.: *Ind. Eng. Chem. Res.*, **29**(8), 1606 (1990).
- Newton, G. W.: Ph. D. Thesis, The University of Utah, Salt Lake City (1986).
- Pigford, R. L. and Sliger, G.: *Ind. Eng. Chem. Process. Des. Dev.*, **12**, 85 (1973).
- Bhatia, S. K. and Perlmutter, D. D.: *AIChE J.*, **27**(2), 226 (1981).
- Borgwardt, R. H., Bruce, K. R. and Blake, J.: *Ind. Eng. Chem. Res.*, **26**(10), 1993 (1987).
- Bruce, K. R. and Borgwardt, B. H.: *AIChE J.*, **32**(2), 239 (1986).
- Hsia, C., Pierre, G. R., Raghunathan, K. and Fan, L. S.: *AIChE J.*, **39**(4), 698 (1993).